These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The role and interactions of cytosolic alkalization and hydrogen peroxide in ultraviolet B-induced stomatal closure in Arabidopsis.
    Author: Zhu Y, Ge XM, Wu MM, Li X, He JM.
    Journal: Plant Sci; 2014 Feb; 215-216():84-90. PubMed ID: 24388518.
    Abstract:
    Cytosolic alkalization has been shown to function as a key player in multiple stimuli-induced stomatal closure, but its role and relationship with hydrogen peroxide (H2O2) in ultraviolet B (UV-B)-induced stomatal closure remains unknown. In this paper, by stomatal bioassay and laser-scanning confocal microscopy, we observed that 0.5 W m(-2) UV-B induced cytosolic alkalization and H2O2 production in guard cells while inducing stomatal closure in Arabidopsis (Arabidopsis thaliana). Butyrate (a weak acid) reduced the cytosolic pH/H2O2 production and prevented stomatal closure by UV-B. Methylamine (a weak base) induced H2O2 production and stomatal closure while enhancing the cytosolic alkalization in guard cells under light alone. The rise in cytosolic pH of wild-type guard cells on exposure to UV-B was evident at 15 min and substantial at 45 min while H2O2 production started to largely increase after 60 min. The failure of UV-B-induced H2O2 production in AtrbohD/F guard cells did not affect the changes of guard cell pH during the first 60 min of UV-B radiation, but largely suppressed cytosolic alkalization after 60 min of UV-B radiation. These results indicate that cytosolic alkalization mediates UV-B-induced stomatal closure via activating H2O2 production and that H2O2 production can feedback-enhance cytosolic alkalization in Arabidopsis guard cells.
    [Abstract] [Full Text] [Related] [New Search]