These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Presynaptic glycine receptors as a potential therapeutic target for hyperekplexia disease. Author: Xiong W, Chen SR, He L, Cheng K, Zhao YL, Chen H, Li DP, Homanics GE, Peever J, Rice KC, Wu LG, Pan HL, Zhang L. Journal: Nat Neurosci; 2014 Feb; 17(2):232-9. PubMed ID: 24390226. Abstract: Although postsynaptic glycine receptors (GlyRs) as αβ heteromers attract considerable research attention, little is known about the role of presynaptic GlyRs, likely α homomers, in diseases. Here, we demonstrate that dehydroxylcannabidiol (DH-CBD), a nonpsychoactive cannabinoid, can rescue GlyR functional deficiency and exaggerated acoustic and tactile startle responses in mice bearing point mutations in α1 GlyRs that are responsible for a hereditary startle-hyperekplexia disease. The GlyRs expressed as α1 homomers either in HEK-293 cells or at presynaptic terminals of the calyceal synapses in the auditory brainstem are more vulnerable than heteromers to hyperekplexia mutation-induced impairment. Homomeric mutants are more sensitive to DH-CBD than are heteromers, suggesting presynaptic GlyRs as a primary target. Consistent with this idea, DH-CBD selectively rescues impaired presynaptic GlyR activity and diminished glycine release in the brainstem and spinal cord of hyperekplexic mutant mice. Thus, presynaptic α1 GlyRs emerge as a potential therapeutic target for dominant hyperekplexia disease and other diseases with GlyR deficiency.[Abstract] [Full Text] [Related] [New Search]