These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bioaugmentation with distinct Dehalobacter strains achieves chloroform detoxification in microcosms.
    Author: Justicia-Leon SD, Higgins S, Mack EE, Griffiths DR, Tang S, Edwards EA, Löffler FE.
    Journal: Environ Sci Technol; 2014; 48(3):1851-8. PubMed ID: 24392834.
    Abstract:
    Chloroform (CF) is a widespread groundwater contaminant not susceptible to aerobic degradation. Under anoxic conditions, CF can undergo abiotic and cometabolic transformation but detoxification is generally not achieved. The recent discovery of distinct Dehalobacter strains that respire CF to dichloromethane (DCM) and ferment DCM to nonchlorinated products promises that bioremediation of CF plumes is feasible. To track both strains, 16S rRNA gene-based qPCR assays specific for either Dehalobacter strain were designed and validated. A laboratory treatability study explored the value of bioaugmentation and biostimulation to achieve CF detoxification using anoxic microcosms established with aquifer material from a CF-contaminated site. Microcosms that received 6% (v/v) of the CF-to-DCM-dechlorinating culture Dhb-CF to achieve an initial Dehalobacter cell titer of 1.6 ± 0.9 × 10(4) mL(-1) dechlorinated CF to stoichiometric amounts of DCM. Subsequent augmentation with 3% (v/v) of the DCM-degrading consortium RM to an initial Dehalobacter cell abundance of 1.2 ± 0.2 × 10(2) mL(-1) achieved complete DCM degradation in microcosms amended with 10 mM bicarbonate. Growth of the CF-respiring and the DCM-degrading Dehalobacter populations and detoxification were also observed in microcosms that received both inocula simultaneously. These findings suggest that anaerobic bioremediation (e.g., bioaugmentation) is a possible remedy at CF- and DCM-contaminated sites without CT, which strongly inhibited CF organohalide respiration and DCM organohalide fermentation.
    [Abstract] [Full Text] [Related] [New Search]