These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Axoplasmic reticulum Ca(2+) release causes secondary degeneration of spinal axons. Author: Stirling DP, Cummins K, Wayne Chen SR, Stys P. Journal: Ann Neurol; 2014 Feb; 75(2):220-9. PubMed ID: 24395428. Abstract: OBJECTIVE: Transected axons of the central nervous system fail to regenerate and instead die back away from the lesion site, resulting in permanent disability. Although both intrinsic (eg, microtubule instability, calpain activation) and extrinsic (ie, macrophages) processes are implicated in axonal dieback, the underlying mechanisms remain uncertain. Furthermore, the precise mechanisms that cause delayed "bystander" loss of spinal axons, that is, ones that were not directly damaged by the initial insult, but succumbed to secondary degeneration, remain unclear. Our goal was to evaluate the role of intra-axonal Ca(2+) stores in secondary axonal degeneration following spinal cord injury. METHODS: We developed a 2-photon laser-induced spinal cord injury model to follow morphological and Ca(2+) changes in live myelinated spinal axons acutely following injury. RESULTS: Transected axons "died back" within swollen myelin or underwent synchronous pan-fragmentation associated with robust Ca(2+) increases. Spared fibers underwent delayed secondary bystander degeneration. Reducing Ca(2+) release from axonal stores mediated by ryanodine and inositol triphosphate receptors significantly decreased axonal dieback and bystander injury. Conversely, a gain-of-function ryanodine receptor 2 mutant or pharmacological treatments that promote axonal store Ca(2+) release worsened these events. INTERPRETATION: Ca(2+) release from intra-axonal Ca(2+) stores, distributed along the length of the axon, contributes significantly to secondary degeneration of axons. This refocuses our approach to protecting spinal white matter tracts, where emphasis has been placed on limiting Ca(2+) entry from the extracellular space across cell membranes, and emphasizes that modulation of axonal Ca(2+) stores may be a key pharmacotherapeutic goal in spinal cord injury.[Abstract] [Full Text] [Related] [New Search]