These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fabrication and performance of a miniaturized 64-element high-frequency endoscopic phased array.
    Author: Bezanson A, Adamson R, Brown J.
    Journal: IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):33-43. PubMed ID: 24402894.
    Abstract:
    We have developed a 40-MHz, 64-element phased-array transducer packaged in a 2.5 x 3.1 mm endoscopic form factor. The array is a forward-looking semi-kerfed design based on a 0.68Pb(Mg(1/3)Nb(2/3))O(3) - 0.32PbTiO3 (PMN-32%PT) single-crystal wafer with an element-to-element pitch of 38 µm. To achieve a miniaturized form factor, a novel technique of wire bonding the array elements to a polyimide flexible circuit board oriented parallel to the forward looking ultrasound beam and perpendicular to the array was developed. A technique of partially dicing into the back of the array was also implemented to improve the directivity of the array elements. The array was fabricated with a single-layer P(VDF-TrFE)-copolymer matching layer and a polymethylpentene (TPX) lens for passive elevation focusing to a depth of 7 mm. The two-way -6-dB pulse bandwidth was measured to be 55% and the average electromechanical coupling (k(eff)) for the individual elements was measured to be 0.62. The one-way -6-dB directivities from several array elements were measured to be ±20°, which was shown to be an improvement over an identical kerfless array. The -3-dB elevation focus resulting from the TPX lens was measured to be 152 µm at the focal depth, and the focused lateral resolution was measured to be 80 µm at a steering angle of 0°. To generate beam profiles and images, the probe was connected to a commercial ultrasound imaging platform which was reprogrammed to allow for phased array transmit beamforming and receive data collection. The collected RF data were then processed offline using a numerical computing script to generate sector images. The radiation pattern for the beamformed transmit pulse was collected along with images of wire phantoms in water and tissue-equivalent medium with a dynamic range of 60 dB. Finally, ex vivo tissue images were generated of porcine brain tissue.
    [Abstract] [Full Text] [Related] [New Search]