These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The quantum-chemical approach to calculations of thermodynamic and structural parameters of formation of fatty acid monolayers with hexagonal packing at the air/water interface.
    Author: Vysotsky YB, Belyaeva EA, Fomina ES, Vollhardt D, Fainerman VB, Miller R.
    Journal: Phys Chem Chem Phys; 2014 Feb 21; 16(7):3187-99. PubMed ID: 24406533.
    Abstract:
    The structural parameters of fatty acid (with formula CnH2n+1COOH, n = 7-16) monolayers at the air/water interface were modeled within quantum-chemical semiempirical program complex Mopac 2012 (PM3 method). On the basis of quantum-chemical calculations it was shown that molecules in the highly ordered monolayer can be oriented at the angle ∼16° (tilted monolayer), or at the angle ∼0° to the normal to the air/water interface (untilted monolayer). The structural parameters of both tilted and untilted monolayers correspond well to the experimental data. The parameters of the unit cell of the modelled tilted monolayer are: a = 8.0-8.2 Å and b = 4.2-4.5 Å (with the corresponding experimental data 8.4-8.7 Å and 4.9-5.0 Å). For the modelled untilted monolayer these parameters are: a = 7.7-8.0 Å; b = 4.6 Å (with the corresponding experimental data 8.4 Å and 4.8-4.9 Å). Enthalpy, entropy and Gibbs' energy of clusterization were calculated for both structures. The correlation dependencies of the calculated parameters on the number of pair intermolecular CHHC interactions in the clusters and the pair interactions between functional groups were obtained. It was shown that the spontaneous clusterization of the fatty carboxylic acids at the air/water interface under standard conditions is energetically preferable for molecules which have 13 or more carbon atoms in the alkyl chain and this result also agrees with the corresponding experimental parameters.
    [Abstract] [Full Text] [Related] [New Search]