These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Stress-induced changes in t-[35S]butylbicyclophosphorothionate binding to gamma-aminobutyric acid-gated chloride channels are mimicked by in vitro occupation of benzodiazepine receptors. Author: Trullas R, Havoundjian H, Skolnick P. Journal: J Neurochem; 1987 Sep; 49(3):968-74. PubMed ID: 2440992. Abstract: The allosteric modulation of t-[35S]butylbicyclophosphorothionate binding by flunitrazepam was studied in well-washed brain membranes prepared from control and swim-stressed rats. Swim stress has been reported to decrease the KD and increase the Bmax of this radioligand. Flunitrazepam increased radioligand binding with equal potency (EC50 approximately 11 nM) in both groups, but the maximal enhancement (efficacy) produced by this drug was significantly greater in control than in swim-stressed rats. Ro 15-1788 (a benzodiazepine receptor antagonist) blocked the effect of flunitrazepam on t-[35S]butylbicyclophosphorothionate binding in both groups. This increase in t-[35S]butylbicyclophosphorothionate binding resulted from a significant reduction in KD with no alteration in Bmax. The KD values obtained in cortical membranes of control rats after addition of flunitrazepam were not significantly different from those in the swim-stressed group. Preincubation of cortical homogenates from control animals with flunitrazepam prior to extensive tissue washing resulted in Bmax and KD values of t-[35S]butylbicyclophosphorothionate similar to those obtained in stressed animals. These findings suggest that stress and flunitrazepam may share a common mechanism in regulating t-[35S]butylbicyclophosphorothionate binding and support the concept that stress-induced modification of gamma-aminobutyric acid (GABA)-gated chloride channels in the CNS results from the release of an endogenous modulator (with benzodiazepine-like properties) of the benzodiazepine-GABA receptor chloride ionophore receptor complex.[Abstract] [Full Text] [Related] [New Search]