These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of adding a virtual reality environment to different modes of treadmill walking. Author: Sloot LH, van der Krogt MM, Harlaar J. Journal: Gait Posture; 2014 Mar; 39(3):939-45. PubMed ID: 24412269. Abstract: Differences in gait between overground and treadmill walking are suggested to result from imposed treadmill speed and lack of visual flow. To counteract this effect, feedback-controlled treadmills that allow the subject to control the belt speed along with an immersive virtual reality (VR) have recently been developed. We studied the effect of adding a VR during both fixed speed (FS) and self-paced (SP) treadmill walking. Nineteen subjects walked on a dual-belt instrumented treadmill with a simple endless road projected on a 180° circular screen. A main effect of VR was found for hip flexion offset, peak hip extension, peak knee extension moment, knee flexion moment gain and ankle power during push off. A consistent interaction effect between VR and treadmill mode was found for 12 out of 30 parameters, although the differences were small and did not exceed 50% of the within subject stride variance. At FS, the VR seemed to slightly improve the walking pattern towards overground walking, with for example a 6.5mm increase in stride length. At SP, gait became slightly more cautious by adding a VR, with a 9.1mm decrease in stride length. Irrespective of treadmill mode, subjects rated walking with the VR as more similar to overground walking. In the context of clinical gait analysis, the effects of VR are too small to be relevant and are outweighed by the gains of adding a VR, such as a more stimulating experience and possibility of augmenting it by real-time feedback.[Abstract] [Full Text] [Related] [New Search]