These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A patient with five chromosomal rearrangements and a 2q31.1 microdeletion.
    Author: Wang T, Mao J, Liu MJ, Choy KW, Li HB, Cram DS, Li H, Chen Y.
    Journal: Clin Chim Acta; 2014 Mar 20; 430():129-33. PubMed ID: 24412318.
    Abstract:
    BACKGROUND: Complex chromosomal rearrangements and chromosomal deletion and duplication syndromes are commonly associated with abnormal clinical phenotypes. The 2q31.1 microdeletion syndrome is a rare cytogenetic event that leads to limb and multi-internal organ anomalies. In this study we investigated the genetic basis of the physical and mental symptoms exhibited by a 4-year-old boy with a suspected 2q31.1 deletion. METHODS: Cytogenetic and molecular techniques including karyotyping, array-based comparative genomic hybridization (aCGH), fluorescence in situ hybridization (FISH) and real-time PCR were used to identify the nature and extent of chromosome abnormalities in the patient. RESULTS: A 3.6Mb interstitial microdeletion of 2q31.1 was identified in association with complex balanced genomic structural rearrangements involving chromosomes 2, 3, 6, 15 and 18. The 2q31.1 deletion resulted in the loss of one copy of several known disease genes, including GAD1, DCAF17, SLC25A12 and ITGA6 associated with mental retardation and facial abnormalities and DLX1/DLX2 partially associated with limb abnormalities. Two additional genes, HOXD13 and CHN1, required for normal limb and eye development that map immediately distal to the 2q31.1 deletion had normal copy numbers, although CHN1 was found to express at a lower level in patient's lymphocytes. CONCLUSIONS: We speculated that the 2q31.1 deletion and/or translocation may have a positional effect which reduces expression of HOXD13 and CHN1 causing haplo-insufficiency, and in combination with the hemizygous expression of the disease genes at 2q31.1, provides a plausible explanation for the diverse clinical symptoms exhibited by the patient.
    [Abstract] [Full Text] [Related] [New Search]