These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Characteristics of soil microbial populations in depressions between karst hills under different land use patterns]. Author: Song M, Zou DS, Du H, Peng WX, Zeng FP, Tan QJ, Fan FJ. Journal: Ying Yong Sheng Tai Xue Bao; 2013 Sep; 24(9):2471-8. PubMed ID: 24417103. Abstract: Based on the investigation and analysis of six soil microbial indices, eight soil conventional nutrient indices, six soil mineral nutrient indices, and 15 vegetation indices in the farmland, grassland, scrub, forest plantation, secondary forest, and primary forest in the depressions between karst hills, this paper analyzed the main soil microbial populations, soil microbial biomass carbon (MBC), nitrogen (MBN), and phosphorus (MBP) and their fractal characteristics, and the relationships of the soil microbes with vegetation, soil nutrients, and soil mineral components under different land use patterns. The soil microbial populations differed in their quantity and composition under different land use patterns. Primary forest and farmland had the highest quantity of soil microbial populations, while forest plantation had the lowest one. The three forests had a higher proportion of soil bacteria, the farmland, grassland, and scrub had a higher proportion of actinomycetes, and all the six land use patterns had a low proportion of soil fungi. Under the six land use patterns, the soil MBC, MBN, and MBP were all high, with the maximum in primary forest. There was a good fractal relationship between the soil MBC and microbial populations, but no fractal relationships between the soil MBN and MBP and the microbial populations. Significant relationships were observed between the soil microbes and the vegetation, soil nutrients, and soil mineral components, and the soil MBC had the closest relationships with the Shannon index of tree layer and the soil total nitrogen, Fe2O3, and CaO contents.[Abstract] [Full Text] [Related] [New Search]