These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Full-genome analysis of avian influenza virus H9N2 from Bangladesh reveals internal gene reassortments with two distinct highly pathogenic avian influenza viruses. Author: Parvin R, Heenemann K, Halami MY, Chowdhury EH, Islam MR, Vahlenkamp TW. Journal: Arch Virol; 2014 Jul; 159(7):1651-61. PubMed ID: 24420161. Abstract: Low-pathogenic avian influenza viruses (LPAIVs) of subtype H9N2 have become widespread in poultry in many Asian countries with relevance to respiratory diseases of multifactorial origin. In Bangladesh, LPAIVs of subtype H9N2 co-circulate simultaneously with highly pathogenic avian influenza viruses (HPAIVs) of subtype H5N1 in commercial and backyard poultry. The aim of this study was to characterize LPAIVs of subtype H9N2 currently circulating in Bangladesh. The selected isolate A/Chicken/Bangladesh/VP01/2006 (H9N2) was propagated in chicken embryos. All eight gene segments were amplified by RT-PCR, cloned, and subjected to full-length sequencing. The sequence data obtained were compared with reference strains available in GenBank. Phylogenetic analysis of LPAIV H9N2 from Bangladesh revealed a close relationship to Indian, Pakistani and Middle Eastern isolates and identified an ancestor relationship to LPAIV H9N2 Quail/HK/G1/1997. The internal genes M and NP belong to lineage G1, whereas NS, PA, PB1 and PB2 belong to the prototype virus A/Chicken/Korea/38349-p96323/96. The internal genes showed high sequence homology to an HPAIV of subtype H7N3 from Pakistan, whereas the PB1 gene showed similarly high nucleotide homologies to recently circulating HPAIV H5N1 from Bangladesh, revealing two independent reassortment events. Examination of the hemagglutinin cleavage site of LPAIV H9N2 confirmed its low pathogenicity. The receptor-binding sites indicated a binding preference for human-type receptors. Several mutations in internal proteins are associated with increased virulence and altered host range, while other amino acids were found to be highly conserved among LPAIV H9N2 isolates.[Abstract] [Full Text] [Related] [New Search]