These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Grafting aptamers onto gold nanostars increases in vitro efficacy in a wide range of cancer cell types. Author: Dam DH, Culver KS, Odom TW. Journal: Mol Pharm; 2014 Feb 03; 11(2):580-7. PubMed ID: 24422969. Abstract: We report the design of a nanoconstruct that can function as a cell-type independent agent by targeting the ubiquitous protein nucleolin. Gold nanostars (AuNS) loaded with high densities of nucleolin-specific DNA aptamer AS1411 (Apt-AuNS) produced anticancer effects in a panel of 12 cancer lines containing four representative subcategories. We found that the nanoconstructs could be internalized by cancer cells and trafficked to perinuclear regions. Apt-AuNS resulted in downregulation of antiapoptotic Bcl-2 mRNA expression by ca. 200% compared to cells without the nanoconstructs. The caspase 3/7 activity (apoptosis) and cell death in cancer cells treated with Apt-AuNS increased by 1.5 times and by ca. 17%, respectively, compared to cells treated with free AS1411 at over 10 times the concentration. Moreover, light-triggered release of aptamer from the AuNS further enhanced the in vitro efficacy of the nanoconstructs in the cancer line panel with a 2-fold increase in caspase activity and a 40% decrease in cell viability compared to treatment with Apt-AuNS only. In contrast, treatments of the nanoconstructs with or without light-triggered release on a panel of normal cell lines had no adverse effects.[Abstract] [Full Text] [Related] [New Search]