These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanical properties and dual drug delivery application of poly(lactic-co-glycolic acid) scaffolds fabricated with a poly(β-amino ester) porogen. Author: Clark A, Milbrandt TA, Hilt JZ, Puleo DA. Journal: Acta Biomater; 2014 May; 10(5):2125-32. PubMed ID: 24424269. Abstract: Polymeric scaffolds that are biocompatible and biodegradable are widely used for tissue engineering applications. Scaffolds can be further enhanced by enabling the release of one or more drugs to stimulate regeneration or for the treatment of a specific disease or condition. In this study, poly(lactic-co-glycolic acid) (PLGA) microspheres were mixed with poly(β-amino ester) (PBAE) particles to create novel hybrid scaffolds capable of dual release of drug and growth factor. Fast-degrading PBAE particles loaded with the drug ketoprofen acted as porogens that provided a rapid 12h release. The PLGA microspheres were loaded with a growth factor, bone morphogenetic protein 2, and fused together around the porogens to create a slow-degrading matrix that provided sustained release lasting 70days. Drug release was further tailored by varying the amount of porogen added to the scaffold. Bioactivity measurements demonstrated that the scaffold fabrication technique did not damage the drug or protein. The compressive modulus was affected by the amount of porogen added, extending from 50 to 111MPa for loadings from 60 to 40% PBAE, and after 5days of degradation, it decreased to 0.6 to 1.1kPa when the porogen was gone. PLGA containing a quick-degrading porogen can be used to release two drugs while developing a porous microarchitecture for cell ingrowth with in a matrix capable of maintaining a compressive modulus applicable for soft tissue implants.[Abstract] [Full Text] [Related] [New Search]