These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Etazolate abrogates the lipopolysaccharide (LPS)-induced downregulation of the cAMP/pCREB/BDNF signaling, neuroinflammatory response and depressive-like behavior in mice.
    Author: Guo J, Lin P, Zhao X, Zhang J, Wei X, Wang Q, Wang C.
    Journal: Neuroscience; 2014 Mar 28; 263():1-14. PubMed ID: 24434771.
    Abstract:
    Increasing evidence has indicated that immune challenge by bacterial lipopolysaccharide (LPS) induces depressive-like behavior, neuroinflammatory response and upregulates phosphodiesterase-4 (PDE4), an enzyme that specifically hydrolyzes cyclic adenosine monophosphate (cAMP). However, whether the potential PDE4 inhibitor etazolate prevents the LPS-induced depressive-like behavior remains unclear. Here using a model of depression induced by the repeated administration of LPS during 16days, and then investigated the influence of LPS on the expression of PDE4, interleukin-1β (IL-1β) and antidepressant action of etazolate in mice through forced swimming, novelty suppressed feeding, sucrose preference and open-field tests. Our results showed that etazolate pretreatment facilitated the recovery from weight loss and prevented the depressive-like behavior induced by repeated LPS administration. Moreover, the antidepressant action of etazolate was paralleled by significantly reducing the expression levels of PDE4A, PDE4B, PDE4D and IL-1β and up-regulating the cAMP/phosphorylated cAMP response-element binding protein (pCREB)/brain-derived neurotrophic factor (BDNF) signaling in the hippocampus and prefrontal cortex of mice. These results indicate that the effects of etazolate on the depressive-like behavior induced by repeated LPS treatment may partially depend on the inhibition of PDE4 subtypes, the activation of the cAMP/pCREB/BDNF signaling and the anti-inflammatory responses in the hippocampus and prefrontal cortex.
    [Abstract] [Full Text] [Related] [New Search]