These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis of the native copper(II)-transport site of human serum albumin and its copper(II)-binding properties.
    Author: Iyer KS, Lau SJ, Laurie SH, Sarkar B.
    Journal: Biochem J; 1978 Jan 01; 169(1):61-9. PubMed ID: 24440.
    Abstract:
    A derivative of the native-sequence tripeptide of the specific Cu(II)-transport site of human serum albumin, L-aspartyl-L-alanyl-L-histidine N-methylamide, was synthesized, and its binding to Cu(II) was examined to determine the influence of the side-chain groups on the Cu(II) binding. The equilibria involved in the Cu(II)-L-aspartyl-L-alanyl-L-histidine N-methylamide system were investigated by analytical potentiometry. Three complex species were found in the pH range 4-10. The same species were identified in both the visible and circular-dichroism spectra. The main species present in the physiological pH range is shown to have the same ligands around the square-planar Cu(II) ion as those reported for albumin and tripeptides diglycyl-L-histidine and its N-methylamide derivative. The results obtained from competition experiments showed that this tripeptide has a higher affinity towards Cu(II) than has albumin itself. The overall findings are compared with those from albumin. At neutral pH the side chains do not play any important role in the Cu(II) binding, but at low pH the beta-carboxyl group of the N-terminal aspartic residue becomes important. A possible competition site on albumin for Cu(II) at low pH is discussed.
    [Abstract] [Full Text] [Related] [New Search]