These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chlormadinone acetate promotes osteoblast differentiation of human mesenchymal stem cells through the ERK signaling pathway. Author: Kim JM, Lee JE, Ryu SH, Suh PG. Journal: Eur J Pharmacol; 2014 Mar 05; 726():1-8. PubMed ID: 24440171. Abstract: Bone is continuously remodeled throughout life, and this remodeling is regulated by osteoclasts and osteoblasts. Bone-forming osteoblasts are derived from mesenchymal stem cells in bone marrow. Here, we have identified a new function of chlormadinone acetate (CMA) as an osteogenic activator in human bone marrow-derived mesenchymal stem cells (hBMSCs). To date, CMA has been used as an oral contraceptive and is known to have antiandrogenic activity. Our results show that CMA promotes osteoblast differentiation and calcium deposition in hBMSCs, whereas CMA treatment suppresses adipogenesis of hBMSCs. CMA activates and potentiates the phosphorylation of extracellular signal-regulated kinases (ERK1/2) in an osteogenic differentiation conditions. In addition, CMA-stimulated osteoblast differentiation is suppressed by inhibiting the ERK pathway, suggesting that CMA promotes the osteogenic differentiation program of hBMSCs through the ERK activation. Taken together, these results suggest a novel function of CMA as an osteogenic activator and intracellular signaling pathway mediated by CMA in osteoblast differentiation.[Abstract] [Full Text] [Related] [New Search]