These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A possible role of protein phosphorylation in the inactivation of a Ca2+-induced Ca2+ release channel from skeletal muscle sarcoplasmic reticulum.
    Author: Morii H, Takisawa H, Yamamoto T.
    Journal: J Biochem; 1987 Aug; 102(2):263-71. PubMed ID: 2444579.
    Abstract:
    The Ca2+-induced Ca2+ release channel in the heavy fraction of the sarcoplasmic reticulum (SR) from rabbit skeletal muscle is inactivated during ATP-dependent Ca2+ uptake (Morii, H., Takisawa, H., & Yamamoto, T. (1985) J. Biol. Chem. 260, 11536-11541). AMP, one of the adenine nucleotides which activate the Ca2+ release, delayed the onset of the channel inactivation when added early during the course of the Ca2+ uptake. However, AMP could no longer activate the channel but accelerated the inactivation when added during the later phase of the Ca2+ uptake. In SR passively loaded with Ca2+, the Ca2+ channel which had been activated by AMP and Ca2+ was not spontaneously inactivated. Similarly, during GTP-dependent Ca2+ uptake, the channel activated by AMP was not inactivated. In addition acid phosphatase markedly delayed the onset of the inactivation during ATP-dependent Ca2+ uptake, without affecting Ca2+ ATPase activity or GTP-dependent Ca2+ uptake by heavy SR. The effect of the phosphatase was completely blocked by ruthenium red, a potent inhibitor of the channel. These results suggest that the channel is inactivated through an ATP-dependent process, presumably phosphorylation of proteins in the SR membrane. This was supported by the findings that the reactivation of the inactivated channel by added Ca2+ was markedly accelerated by the addition of acid phosphatase and that several proteins of heavy SR were phosphorylated during ATP-dependent Ca2+ uptake.
    [Abstract] [Full Text] [Related] [New Search]