These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characteristics of miniature Cheddar-type cheese made by microbial rennet from Bacillus amyloliquefaciens: a comparison with commercial calf rennet.
    Author: An Z, He X, Gao W, Zhao W, Zhang W.
    Journal: J Food Sci; 2014 Feb; 79(2):M214-21. PubMed ID: 24446932.
    Abstract:
    Miniature Cheddar-type cheeses were produced using microbial rennet from Bacillus amyloliquefaciens (milk-clotting enzyme [MCE]) or calf rennet (CAR). With the exception of pH, there were no significant differences in gross composition between MCE-cheese (MCE-C) and CAR-cheese (CAR-C). The pH value of CAR-C was significantly higher than that of MCE-C at 40 and 60 d of ripening. The total nitrogen content of the pH 4.6-soluble fraction obtained from MCE-C was higher than that obtained from CAR-C. However, nitrogen content of the 12% TCA-soluble fraction was similar between CAR-C and MCE-C. The extent of α(s1)-casein and β-casein hydrolysis, measured by urea-PAGE, was similar in both cheese samples. The hydrolysis of β-casein was lower than that of α(s1)-casein. Different reverse phase-high-performance liquid chromatography peptide profiles of ethanol-soluble and ethanol-insoluble fractions were obtained from CAR-C and MCE-C. The peptide content in the 2 cheese samples increased throughout ripening; the ratio of hydrophobic to hydrophilic peptides was lower in MCE-C than in CAR-C. Compared with CAR-C, MCE-C was softer as a result of higher protein hydrolysis. Microbial rennet from B. amyloliquefaciens contributed to higher proteolytic rates, which reduced ripening time.
    [Abstract] [Full Text] [Related] [New Search]