These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Distribution of (Na+ + K+)ATPase and sodium channels in skeletal muscle and electroplax. Author: Ariyasu RG, Deerinck TJ, Levinson SR, Ellisman MH. Journal: J Neurocytol; 1987 Aug; 16(4):511-22. PubMed ID: 2445928. Abstract: The distributions of (Na+ + K+)ATPase and sodium channels in skeletal muscle fibres and electrocytes were determined by immunofluorescent and immunoelectron microscopic techniques using antibodies against rat and eel (Na+ + K+)ATPase and the eel electric organ sodium channel. The extrajunctional sarcolemma of skeletal muscle was uniformly stained by polyclonal antibodies against (Na+ + K+)ATPase and the sodium channel. The T-tubule system of skeletal muscle was also labelled heavily for both (Na+ + K+)ATPase and the sodium channel. The terminal cisternae of the sarcoplasmic reticulum was stained for (Na+ + K+)ATPase but not sodium channels. At the motor endplate, (Na+ + K+)ATPase-like immunoreactivity was present along the plasmalemma of motor nerve terminals but not along the postsynaptic junctional sarcolemma. Paradoxically, a monoclonal antibody that binds to the alpha form of the catalytic subunit of (Na+ + K+)ATPase from rat hepatocytes and renal tubule cells did not label the enzyme in rat skeletal muscle. In electrocytes, (Na+ + K+)ATPase-like immunoreactivity was concentrated primarily along the plasmalemma and calveolae of the non-innervated face. In contrast, sodium channel-like immunoreactivity was concentrated along the plasmalemma of the innervated face except in the clefts of the postsynaptic membrane. Thus, we conclude that at endplates both the (Na+ + K+)ATPase of rat skeletal muscle and sodium channels of eel electrocytes are not concentrated in the juxtaneuronal postsynaptic membrane. We also interpret the failure of the monoclonal anti-alpha (Na+ + K+)ATPase antibodies to bind to the enzyme in muscle to indicate that the catalytic subunit of skeletal muscle (Na+ + K+)ATPase displays different epitopes than does the alpha subunit of kidney and liver.[Abstract] [Full Text] [Related] [New Search]