These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tetrodotoxin-resistant sodium current of rat nodose neurones: monovalent cation selectivity and divalent cation block.
    Author: Ikeda SR, Schofield GG.
    Journal: J Physiol; 1987 Aug; 389():255-70. PubMed ID: 2445974.
    Abstract:
    1. Monovalent cation selectivity and divalent cation sensitivity of the tetrodotoxin (TTX)-resistant Na+ current in dissociated adult rat nodose ganglion neurones were investigated using the whole-cell patch-clamp technique. 2. The TTX-resistant Na+ current was isolated using ion substitution and pharmacological agents. Under these conditions, the current reversal potential shifted 52 mV per tenfold change in external [Na+]. 3. Inorganic and organic monovalent cation permeability ratios (Px/PNa) were determined from changes in reversal potential and the Goldman-Hodgkin-Katz equation. The Px/PNa values determined by the former method were HONH3+, 1.38; Li+, 1.00; H2NNH3+, 0.66; NH4+, 0.28; CH3NH3+, less than 0.13; K+, less than 0.13; Rb+, less than 0.12; Cs+, less than 0.10; (CH3)4N+, less than 0.10. The values determined by either method agreed within 10%. 4. The effects of Cd2+, Co2+, Mn2+ and Ni2+ on the TTX-resistant Na+ current were analysed from peak-conductance values. These ions shifted the activation of the current to more positive potentials and decreased the maximal conductance. At 3 mM concentrations, Cd2+, Ni2+, Co2+ and Mn2+ decreased the maximal conductance 64.6, 50.7, 25.0 and 20.3%, respectively. 5. The results indicate that: (a) the monovalent cation selectivity of the TTX-resistant Na+ current is similar to that of the TTX-sensitive Na+ current in other tissues; and (b) the TTX-resistant Na+ current is less sensitive to divalent cations than the Ca2+ current in these neurones. These observations suggest that the structure determining the monovalent cation permeability of the TTX-resistant Na+ current is similar to that of the TTX-sensitive Na+ current in other tissues, and that the channels carrying the TTX-resistant Na+ current are distinct from those responsible for the Ca2+ current.
    [Abstract] [Full Text] [Related] [New Search]