These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The mechanism of oxidation of reduced nicotinamide dinucleotide phosphate by submitochondrial particles from beef heart.
    Author: Rydström J, Montelius J, Bäckström D, Ernster L.
    Journal: Biochim Biophys Acta; 1978 Mar 13; 501(3):370-80. PubMed ID: 24468.
    Abstract:
    1. Oxidation of NADPH by various acceptors catalyzed by submitochondrial particles and a partially purified NADH dehydrogenase from beef heart was investigated. Submitochondrial particles devoid of nicotinamide nucleotide transhydrogenase activity catalyze an oxidation of NADPH by oxygen. The partially purified NADH dehydrogenase prepared from these particles catalyzes an oxidation of NADPH by acetylpyridine-NAD. In both cases the rates of oxidation are about two orders of magnitude lower than those obtained with NADH as electron donor. 2. The kinetic characteristics of the NADPH oxidase reaction and reduction of acetylpyridine-NAD by NADPH are similar with regard to pH dependences and affinities for NADPH, indicating that both reactions involve the same binding site for NADPH. The binding of NADPH to this site appears to be rate limiting for the overall reactions. 3. At redox equilibrium NADPH and NADH reduce FMN and iron-sulphur center 1 of NADH dehydrogenase to the same extents. The rate of reduction of FMN by NADPH is at least two orders of magnitude lower than with NADH. 4. It is concluded that NADPH is a substrate of NADH dehydrogenase and that the nicotinamide nucleotide is oxidized by submitochondrial particles via the NADH--binding site of the enzyme.
    [Abstract] [Full Text] [Related] [New Search]