These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: NADPH oxidase 4 promotes cardiac microvascular angiogenesis after hypoxia/reoxygenation in vitro.
    Author: Wang J, Hong Z, Zeng C, Yu Q, Wang H.
    Journal: Free Radic Biol Med; 2014 Apr; 69():278-88. PubMed ID: 24480752.
    Abstract:
    Microvascular endothelial cell dysfunction plays a key role in myocardial ischemia/reperfusion (I/R) injury, wherein reactive oxygen species (ROS)-dependent signaling is intensively involved. However, the roles of the various ROS sources remain unclear. This study sought to investigate the role of NADPH oxidase 4 (Nox4) in the cardiac microvascular endothelium in response to I/R injury. Adult rat cardiac microvascular endothelial cells (CMECs) were isolated and subjected to hypoxia/reoxygenation (H/R). Our results showed that Nox4 was highly expressed in CMECs, was significantly increased at both mRNA and protein levels after H/R injury, and contributed to H/R-stimulated increase in Nox activity and ROS generation. Downregulation of Nox4 by small interfering RNA transfection did not affect cell viability or ROS production under normoxia, but exacerbated H/R injury as evidenced by increased apoptosis and inhibited cell survival, migration, and angiogenesis after H/R. Nox4 inhibition also increased prolyl hydroxylase 2 (PHD2) expression and blocked H/R-induced increases in HIF-1α and VEGF expression. Pretreatment with DMOG, a specific competitive PHD inhibitor, upregulated HIF-1α and VEGF expression and significantly reversed Nox4 knockdown-induced injury. However, Nox2 was scarcely expressed and played a minimal role in CMEC survival and angiogenesis after H/R, though a modest upregulation of Nox2 was observed. In conclusion, this study demonstrated a previously unrecognized protective role of Nox4, a ROS-generating enzyme and the major Nox isoform in CMECs, against H/R injury by inhibiting apoptosis and promoting migration and angiogenesis via a PHD2-dependent upregulation of HIF-1/VEGF proangiogenic signaling.
    [Abstract] [Full Text] [Related] [New Search]