These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: One-step synthesis of water-dispersible ultra-small Fe3O4 nanoparticles as contrast agents for T1 and T2 magnetic resonance imaging.
    Author: Wang G, Zhang X, Skallberg A, Liu Y, Hu Z, Mei X, Uvdal K.
    Journal: Nanoscale; 2014 Mar 07; 6(5):2953-63. PubMed ID: 24480995.
    Abstract:
    Uniform, highly water-dispersible and ultra-small Fe3O4 nanoparticles were synthesized via a modified one-step coprecipitation approach. The prepared Fe3O4 nanoparticles not only show good magnetic properties, long-term stability in a biological environment, but also exhibit good biocompatibility in cell viability and hemolysis assay. Due to the ultra-small sized and highly water-dispersibility, they exhibit excellent relaxivity properties, the 1.7 nm sized Fe3O4 nanoparticles reveal a low r2/r1 ratio of 2.03 (r1 = 8.20 mM(-1) s(-1), r2 = 16.67 mM(-1) s(-1)); and the 2.2 nm sized Fe3O4 nanoparticles also appear to have a low r2/r1 ratio of 4.65 (r1 = 6.15 mM(-1) s(-1), r2 = 28.62 mM(-1) s(-1)). This demonstrates that the proposed ultra-small Fe3O4 nanoparticles have great potential as a new type of T1 magnetic resonance imaging contrast agents. Especially, the 2.2 nm sized Fe3O4 nanoparticles, have a competitive r1 value and r2 value compared to commercial contrasting agents such as Gd-DTPA (r1 = 4.8 mM(-1) s (-1)), and SHU-555C (r2 = 69 mM(-1) s(-1)). In vitro and in vivo imaging experiments, show that the 2.2 nm sized Fe3O4 nanoparticles exhibit great contrast enhancement, long-term circulation, and low toxicity, which enable these ultra-small sized Fe3O4 nanoparticles to be promising as T1 and T2 dual contrast agents in clinical settings.
    [Abstract] [Full Text] [Related] [New Search]