These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biaxiality-induced magnetic field effects in bent-core nematics: molecular-field and Landau theory. Author: To TB, Sluckin TJ, Luckhurst GR. Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062506. PubMed ID: 24483467. Abstract: Nematic liquid crystals composed of bent-core molecules exhibit unusual properties, including an enhanced Cotton-Mouton effect and an increasing isotropic (paranematic)-nematic phase transition temperature as a function of magnetic field. These systems are thought to be good candidate biaxial liquid crystals. Prompted by these experiments, we investigate theoretically the effect of molecular biaxiality on magnetic-field-induced phenomena for nematic liquid crystals, using both molecular field and Landau theory. The geometric mean approximation is used in order to specify the degree of molecular biaxiality using a single parameter. We reproduce experimental field-induced phenomena and predict also an experimentally accessible magnetic critical point. The Cotton-Mouton effect and temperature dependence of the paranematic-nematic phase transition are more pronounced with increased molecular biaxiality. We compare our theoretical approaches and make contact with recent relevant experimental results on bent-core molecular systems.[Abstract] [Full Text] [Related] [New Search]