These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Real time shear waves elastography monitoring of thermal ablation: in vivo evaluation in pig livers. Author: Mariani A, Kwiecinski W, Pernot M, Balvay D, Tanter M, Clement O, Cuenod CA, Zinzindohoue F. Journal: J Surg Res; 2014 May 01; 188(1):37-43. PubMed ID: 24485877. Abstract: BACKGROUND: Thermal ablation is a widely used minimally invasive treatment modality for different cancers. However, lack of a real-time imaging system for accurate evaluation of the procedure is one of the reasons of local recurrences. Shear waves elastography (SWE) is a new ultrasound (US) imaging modality to quantify tissue stiffness. The aim of the study was to assess the feasibility and accuracy of US elastography for quantitative monitoring of thermal ablation and to determine the elasticity threshold predictive of coagulation necrosis. METHODS: A total of 29 in vivo thermal lesions were performed in pig livers with radiofrequency system. SWE and B-mode images were acquired simultaneously. Liver elasticity was quantified by using SWE data and expressed in kilopascal. After the procedure, pathologic analysis of treated tissues was compared with US images. The sensitivity and positive predictive value of the SWE maps of tissue elasticity were calculated and compared with the boundaries of the pale coagulation necrosis areas found at pathology. RESULTS: The liver mean elasticity values before and after thermal therapy were 6.4 ± 0.3 and 38.1 ± 2.5 kPa, respectively (P < 0.0001). For a threshold of 20 kPa, sensitivity (i.e., the rate of pixels correctly detected as necrosed tissue) was 0.8, and the positive predictive value (i.e., the rate of pixels in the elastographic map >20 kPa that actually developed coagulation necrosis) was 0.83. CONCLUSIONS: Tissue areas with coagulation necrosis are significantly stiffer than the surrounding tissue. SWE permits the real-time detection of coagulation necrosis produced by radiofrequency and could potentially be used to monitor US-guided thermal ablation.[Abstract] [Full Text] [Related] [New Search]