These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of in vitro and in vivo lead exposure on voltage-dependent calcium channels in central neurons of Lymnaea stagnalis. Author: Audesirk G. Journal: Neurotoxicology; 1987; 8(4):579-92. PubMed ID: 2450322. Abstract: Currents through calcium channels of members of an identified cluster of neurons (B cells) in the pond snail Lymnaea stagnalis were studied under voltage clamp. The normal physiological saline was modified to maximize the visibility of voltage-dependent calcium currents and minimize contamination by other currents. Barium was used as the charge carrier for the calcium channels. Depolarizing voltage steps induce an inward current, the magnitude of which varies with the barium concentration. In brains taken from animals not exposed in vivo to lead, in vitro addition of lead acetate to the recording medium (0.25 to 14 microM) inhibits the barium current by 59 +/- 14% (mean +/- s.d.), in a manner that is independent of the lead concentration. The magnitude of the residual current still varies with the barium concentration. The voltage dependence of the current appears to be unaffected by lead. In contrast to some other calcium-channel blockers, such as cobalt, the inhibition of barium currents by in vitro lead exposure is irreversible, at least in short-term experiments. Contrary to expectations based on these in vitro results, barium currents in B cells of animals exposed to 5 microM lead for 6 to 12 weeks in vivo were approximately twice as large as barium currents in B cells from unexposed controls, when both were recorded in lead-free saline. It is possible that chronic in vivo lead exposure causes an increase in the number of calcium channels in these neurons.[Abstract] [Full Text] [Related] [New Search]