These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Complex response of epithelial cells to inhibition of Na+ transport by amiloride.
    Author: Fisher RS, Lockard JW.
    Journal: Am J Physiol; 1988 Feb; 254(2 Pt 1):C297-303. PubMed ID: 2450465.
    Abstract:
    When toad urinary bladder or frog skin epithelia are treated with amiloride, short-circuit current (Isc), which represents the net active transepithelial Na+ transport rate from the apical to basolateral surface, decreases rapidly (2-5 s) to approximately 15-20% of control values and then slowly, over several minutes, continues falling toward zero. The contribution of this second phase of the decline is dependent on the transporting condition of the tissue before administration of amiloride. Attenuation of the second phase was observed if tissues were subjected to a period of transport inhibition. Tissues preincubated in 0 Na+ Ringer solution on the apical surface were returned to control Na+ Ringer, which caused an approximately 25% increase of Isc above control values. Immediate reapplication of amiloride caused Isc to decrease more rapidly than the previous exposure to values near zero, substantially reducing or eliminating the secondary slow decline. After long-term reincubation of tissues in control, 100 mM Na+ solution, another treatment with amiloride indicated that the magnitude of the secondary decline increased in frog skin but not in urinary bladder epithelia. We conclude that the effect of amiloride is complex and may cause additional effects besides simply blocking entry of Na+ into the apical membrane channel, and we suggest that regulatory mechanisms may be invoked in response to transport inhibition.
    [Abstract] [Full Text] [Related] [New Search]