These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A molecular electrostatic potential analysis of hydrogen, halogen, and dihydrogen bonds. Author: Mohan N, Suresh CH. Journal: J Phys Chem A; 2014 Mar 06; 118(9):1697-705. PubMed ID: 24506527. Abstract: Hydrogen, halogen, and dihydrogen bonds in weak, medium and strong regimes (<1 to ∼ 60 kcal/mol) have been investigated for several intermolecular donor-acceptor (D-A) complexes at ab initio MP4//MP2 method coupled with atoms-in-molecules and molecular electrostatic potential (MESP) approaches. Electron density ρ at bond critical point correlates well with interaction energy (Enb) for each homogeneous sample of complexes, but its applicability to the entire set of complexes is not satisfactory. Analysis of MESP minimum (V(min)) and MESP at the nuclei (Vn) shows that in all D-A complexes, MESP of A becomes more negative and that of D becomes less negative suggesting donation of electrons from D to A leading to electron donor-acceptor (eDA) interaction between A and D. MESP based parameter ΔΔVn measures donor-acceptor strength of the eDA interactions as it shows a good linear correlation with Enb for all D-A complexes (R(2) = 0.976) except the strongly bound bridged structures. The bridged structures are classified as donor-acceptor-donor complexes. MESP provides a clear evidence for hydrogen, halogen, and dihydrogen bond formation and defines them as eDA interactions in which hydrogen acts as electron acceptor in hydrogen and dihydrogen bonds while halogen acts as electron acceptor in halogen bonds.[Abstract] [Full Text] [Related] [New Search]