These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of algal organic matters of Microcystis aeruginosa: biodegradability, DBP formation and membrane fouling potential. Author: Zhou S, Shao Y, Gao N, Deng Y, Li L, Deng J, Tan C. Journal: Water Res; 2014 Apr 01; 52():199-207. PubMed ID: 24508915. Abstract: Algal organic matters (AOM), including extracellular organic matters (EOM) and intracellular organic matters (IOM), were comprehensively studied in terms of their biodegradability, disinfection byproduct (DBP) formation potentials and membrane fouling. EOM and IOM were fractionated into hydrophobic (HP), transphilic (TP) and hydrophilic (HL) constituents. The HP, TP and HL fractions of EOM and IOM were highly biodegradable with BDOC/DOC ranging from 52.5% to 67.4% and the DBP formation potentials followed the order of HP > TP > HL, except of IOM-HL. Biodegradable process proved very effective in removing the DBP formation potentials. Moreover, the AOM characteristics were also evaluated during ultrafiltration (UF) treatment. Results demonstrated that UF favourably remove DOC and DBP formation potential of IOM than those of EOM. And the HL constituents played a more important role in membrane fouling than HP and TP. The UF foulants exhibited higher BDOC/DOC than AOM, suggesting EOM and IOM might enhance biofouling because more biodegradable proteins and polysaccharides were found in membrane foulants. Therefore, appropriate biological treatment, ultrafiltration, or combination of the both are potential options to address these algae-caused water quality issues.[Abstract] [Full Text] [Related] [New Search]