These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pharmacological evaluation of adipose dysfunction via 11β-hydroxysteroid dehydrogenase type 1 in the development of diabetes in diet-induced obese mice with cortisone pellet implantation. Author: Akiyama N, Akiyama Y, Kato H, Kuroda T, Ono T, Imagawa K, Asakura K, Shinosaki T, Murayama T, Hanasaki K. Journal: J Pharmacol Exp Ther; 2014 Apr; 349(1):66-74. PubMed ID: 24511146. Abstract: Signals from intracellular glucocorticoids (GCs) via 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in adipose tissues have been reported to serve as amplifiers leading to deterioration of glucose metabolism associated with obesity. To elucidate adipose dysfunction via 11β-HSD1 activation in the development of obesity-related diabetes, we established novel diabetic mice by implanting a cortisone pellet (CP) in diet-induced obesity (DIO) mice. Cortisone pellet-implanted DIO mice (DIO/CP mice) showed hyperglycemia, insulin resistance, hyperlipidemia, and ectopic fat accumulation, whereas cortisone pellet implantation in lean mice did not induce hyperglycemia. In DIO/CP mice, indexes of lipolysis such as plasma glycerol and nonesterified fatty acids (NEFAs) increased before hyperglycemia appeared. Furthermore, the adipose mRNA level of 11β-HSD1 was up-regulated in DIO/CP mice compared with sham-operated DIO mice. RU486 (mifepristone, 11β-[p-(dimethylamino)phenyl]-17β-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one), a glucocorticoid receptor antagonist, decreased adipose mRNA levels of 11β-HSD1 as well as adipose triglyceride lipase. RU486 also improved plasma NEFA, glycerol, and glucose levels in DIO/CP mice. These results demonstrate that lipolysis in adipose tissues caused by GC activation via 11β-HSD1 serves as a trigger for diabetes with ectopic fat accumulation. Our findings also indicate the possibility of a vicious circle of GC signals via 11β-HSD1 up-regulation in adipose tissues, contributing to deterioration of glucose metabolism to result in diabetes. Our DIO/CP mouse could be a suitable model of type 2 diabetes to evaluate adipose dysfunction via 11β-HSD1.[Abstract] [Full Text] [Related] [New Search]