These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MC540 and upconverting nanocrystal coloaded polymeric liposome for near-infrared light-triggered photodynamic therapy and cell fluorescent imaging.
    Author: Wang H, Liu Z, Wang S, Dong C, Gong X, Zhao P, Chang J.
    Journal: ACS Appl Mater Interfaces; 2014 Mar 12; 6(5):3219-25. PubMed ID: 24511877.
    Abstract:
    In clinic, the application of photodynamic therapy (PDT) in deep tissue is severely constrained by the limited penetration depth of visible light needed for activating the photosensitizer (PS). In this Article, a merocyanine 540 (MC540) and upconverting nanoparticle (UCN) coloaded functional polymeric liposome nanocarrier, (MC540 + UCN)/FPL, was designed and constructed successfully for solving this problem in PDT. Compared with the conventional approaches using UCNs absorbing PSs directly, the combination of UCN and polymeric liposome has unique advantages. The UCN core as a transducer can convert deep-penetrating near-infrared light to visible light for activating MC540. The functional polymeric liposome shell decorated with folate as a nanoshield can keep the UCN and MC540 stable, protect them from being attacked, and help them get into cells. The results show that (MC540 + UCN)/FPL is an individual nanosphere with an average size of 26 nm. MC540 can be activated to produce singlet oxygen successfully by upconverting fluorescence emitted from UCNs. After (MC540 + UCN)/FPL was modified with folate, the cell uptake efficiency increased obviously. More interestingly, in the PDT effect test, the (MC540 + UCN)/FPL nanocarrier further improved the inhibition effect on tumor cells by anchoring targeting folate and transactivating transduction peptide. Our data suggest that the (MC540 + UCN)/FPL nanocarrier may be a useful nanoplatform for future PDT treatment in deep-cancer therapy based on upconversion mechanism.
    [Abstract] [Full Text] [Related] [New Search]