These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Using polyethylene glycol as nonionic osmoticum to promote growth and lipid production of marine microalgae Nannochloropsis oculata.
    Author: Lee YH, Yeh YL.
    Journal: Bioprocess Biosyst Eng; 2014 Aug; 37(8):1669-77. PubMed ID: 24522612.
    Abstract:
    To promote the economic feasibility of Nannochloropsis oculata, efficacy of using polyethylene glycol (PEG) to increase microalgal growth and lipid accumulation was investigated. We first examined the effects of PEG concentrations on microalgal growth using 0-5 % (w/v) PEG-6000, and followed by exploring the effects of PEG molecular weights (400, 600, 2,000, 4,000, 6,000, and 20,000) on microalgal growth, size, as well as on yields of biomass, total lipids, and eicosapentaenoic acid. In addition, the capacity of PEG to reduce the effect of oxygen inhibition on microalgal growth was also investigated to evaluate its adaptability for use in large-scale and closed setting. Our results showed that PEG-induced osmotic stress (Π) in the range of 2.465-2.472 MPa can raise microalgal growth. The PEG with higher molecular weight exhibited greater efficacy of growth promotion but less lipid content under equal concentration. In this study, 0.5 % (w/v) PEG-20000 (Π = 2.466 MPa) remarkably enhanced microalgal growth without interference of intracellular lipid productivity and cellular size, yielding >50 % (w/w) increases in biomass, total lipid, and eicosapentaenoic acid amounts after 7 days that provided the optimal condition for microalgal cultivation. These positive effects possibly resulted from the moderate enhancement of osmotic stress in the medium and stronger chaotrope-like behavior from higher molecular weight PEG. With further verification that 0.5 % (w/v) PEG-20000 enabled to reduce the effect of oxygen inhibition on microalgal growth, the PEG-20000-mediated cultivation offers a feasible means for mass culture of N. oculata in closed setting.
    [Abstract] [Full Text] [Related] [New Search]