These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High expression and prognostic role of CAP1 and CtBP2 in breast carcinoma: associated with E-cadherin and cell proliferation. Author: Liu X, Yao N, Qian J, Huang H. Journal: Med Oncol; 2014 Mar; 31(3):878. PubMed ID: 24522810. Abstract: Overexpression of C-terminal binding protein-2 (CtBP2) has been noted to correlate with cancer metastasis in several human cancers including breast cancer. The aim of this study was to examine the effect of cyclase-associated protein 1 (CAP1) overexpression on CtBP2 expression and related mechanism in the metastasis of breast cancer. Immunohistochemical analysis was performed in 100 human breast carcinoma samples, and the data were correlated with clinicopathologic features. Furthermore, Western blot analysis was performed for CAP1 and CtBP2 in breast carcinoma samples and cell lines to evaluate their protein levels and molecular interaction. We found that the expression of CAP1 was positively related to CtBP2 expression (P<0.01); moreover, CAP1 expression was significantly correlated with histologic grade (P<0.01) and negatively related to E-cadherin expression (P<0.01). Meanwhile, CtBP2 expression obtained similar results. Kaplan-Meier survival analysis showed that overexpression of CAP1 and CtBP2 exhibited a significant correlation with poor prognosis in human breast cancer (P<0.01). While in vitro, we employed siRNA technique to knockdown CAP1 and CtBP2 expressions and observed their effects on MDA-MB-231 cells growth. CtBP2 depletion by siRNA-inhibited cell proliferation, resulted in increased E-cadherin levels. Moreover, knockdown of CAP1 resulted in decreased CtBP2 and increased E-cadherin expression. On the basis of these results, we suggested that CAP1's oncogenic abilities appear to be triggered at least in part by the modulation of CtBP2 and E-cadherin, which might serve as a future target for breast cancer.[Abstract] [Full Text] [Related] [New Search]