These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Shape-dependent electron transfer kinetics and catalytic activity of NiO nanoparticles immobilized onto DNA modified electrode: fabrication of highly sensitive enzymeless glucose sensor.
    Author: Sharifi E, Salimi A, Shams E, Noorbakhsh A, Amini MK.
    Journal: Biosens Bioelectron; 2014 Jun 15; 56():313-9. PubMed ID: 24525015.
    Abstract:
    Herein we describe improved electron transfer properties and catalytic activity of nickel oxide nanoparticles (NiONPs) via the electrochemical deposition on DNA modified glassy carbon electrode (DNA/GCE) surface. NiONPs deposited on the bare and DNA-coated GCE showed different morphologies, electrochemical kinetics and catalytic activities. The atomic force microscopy (AFM) images revealed the formation of triangular NPs on the DNA/GCE that followed the shape produced by the DNA template, while the electrodeposition of NiONPs on the bare GCE surface led to the formation of spherical nanoparticles. Electrochemical impedance spectroscopy (EIS) measurements revealed lower charge-transfer resistance (Rct) of triangular NiONPs compared to spherical NPs. Furthermore, the electrocatalytic activity of triangular NiONPs compared to spherical NPs toward glucose oxidation in alkaline media was significantly improved. The amperometric oxidation of glucose at NiONP-DNA/GCE, yielded a very high sensitivity of 17.32 mA mM(-1)cm(-2) and an unprecedented detection limit of 17 nM. The enhanced electron transfer properties and electrocatalytic activity of NiONP-DNA/GCE can be attributed to the higher fraction of sharp corners and edges present in the triangular NiONPs compared to the spherical NPs. The developed sensor was successfully applied to the determination of glucose in serum samples.
    [Abstract] [Full Text] [Related] [New Search]