These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biosorption of arsenite (As(+3)) and arsenate (As(+5)) from aqueous solution by Arthrobacter sp. biomass. Author: Prasad KS, Ramanathan AL, Paul J, Subramanian V, Prasad R. Journal: Environ Technol; 2013; 34(17-20):2701-8. PubMed ID: 24527632. Abstract: In this study we investigated the role of arsenic-resistant bacteria Arthrobacter sp. biomass for removal of arsenite as well as arsenate from aqueous solution. The biomass sorption characteristics were studied as a function of biomass dose, contact time and pH. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm. The Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The biosorption capacity of the biomass for As(+3) and As(+5) was found to be 74.91 mg/g (pH 7.0) and 81.63 mg/g (pH 3.0), respectively using 1 g/L biomass with a contact time of 30 min at 28 degrees C. The mean sorption energy values calculated from the D-R model indicated that the biosorption of As(+3) and As(+5) onto Arthrobacter sp. biomass took place by chemical ion-exchange. The thermodynamic parameters showed that the biosorption of As(+3) and As(+5) ions onto Arthrobacter sp. biomass was feasible, spontaneous and exothermic in nature. Kinetic evaluation of experimental data showed that biosorption of As(+3) and As(+5) followed pseudo-second-order kinetics. Fourier transform infrared spectroscopy (FT-IR) analysis indicated the involvement of possible functional groups (-OH, -C=O and -NH) in the As(+3) and As(+5) biosorption process. Bacterial cell biomass can be used as a biosorbent for removal of arsenic from arsenic-contaminated water.[Abstract] [Full Text] [Related] [New Search]