These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fungal mn oxides supporting Mn(II) oxidase activity as effective Mn(II) sequestering materials. Author: Chang J, Tani Y, Naitou H, Miyata N, Seyama H. Journal: Environ Technol; 2013; 34(17-20):2781-7. PubMed ID: 24527642. Abstract: We examined the Mn(II)-oxidizing ability of the biogenic Mn oxide (BMO) formed in cultures ofa Mn(II)-oxidizing fungus, Acremonium strictum strain KR21-2. The newly formed BMO effectively sequestered dissolved Mn(II) mainly by oxidizing Mn(II) to insoluble Mn under air-equilibrated conditions, and this ability lasted for at least 8 days. Deaerating the BMOs, poisoning them with NaN3, or heating them all readily weakened their Mn(II) oxidation ability, indicating the involvement of enzymatic Mn(II) oxidation. There was no Mn(II)-oxidizing ability observed for mycelia cultivated without Mn(II) or for residual mycelia after the BMO phase was dissolved, suggesting the need for the oxide phase. A sodium dodecyl sulphate-polyacrylamide gel electrophoresis assay demonstrated that the oxide phase embeds the Mn(II) oxidase and thereby maintains the enzymatic activity in BMOs. Freezing at -80 degrees C preserved the Mn(II)-oxidizing ability in BMOs for at least 4 weeks, while lyophilization caused a complete loss of this ability. Based on these results, we propose that fungal Mn oxides supporting Mn(II) oxidase activity are an effective Mn(II)-sequestering material capable of oxidizing Mn(II) continuously from solutions containing no additional nutrients to maintain biological activity.[Abstract] [Full Text] [Related] [New Search]