These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of the mitochondrial inner membrane anion channel by dicyclohexylcarbodiimide. Evidence for a specific transport pathway.
    Author: Beavis AD, Garlid KD.
    Journal: J Biol Chem; 1988 Jun 05; 263(16):7574-80. PubMed ID: 2453508.
    Abstract:
    Electrophoretic uniport of anions through the inner mitochondrial membrane can be activated by alkaline pH or by depleting the matrix of divalent cations. It has also been suggested that, in the presence of valinomycin and potassium, respiration can also activate anion uniport. We have proposed that a single pathway is responsible for all three of these transport processes (Garlid, K. D., and Beavis, A. D. (1986) Biochim. Biophys. Acta 853, 187-204). We now present evidence that like the "pH-dependent" pore the divalent cation-regulated pore and the "respiration-induced" pore are blocked by N,N'-dicyclohexylcarbodiimide (DCCD). Moreover, the kinetics of inhibition of the latter two pathways are identical and exhibit a second order rate constant of 2.6 X 10(-3) (nmol DCCD/mg)-1.min-1. DCCD inhibits the uniport of Cl-, phosphate, malate, and other lipophobic anions completely, but it has no effect on the classical electroneutral phosphate and dicarboxylate carriers. In Mg2+-depleted mitochondria DCCD partially inhibits the transport of SCN-; however, in Mg2+-containing mitochondria and at low pH, no inhibition is observed. Furthermore, in DCCD-treated mitochondria, even following depletion of Mg2+, the transport of SCN- is independent of pH. These results lead us to conclude that two pathways for anion uniport exist: a specific, regulated pathway which can conduct a wide variety of anions and a nonregulated pathway through the lipid bilayer which only conducts lipid-soluble ions.
    [Abstract] [Full Text] [Related] [New Search]