These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evolution of primate α and θ defensins revealed by analysis of genomes.
    Author: Li D, Zhang L, Yin H, Xu H, Satkoski Trask J, Smith DG, Li Y, Yang M, Zhu Q.
    Journal: Mol Biol Rep; 2014 Jun; 41(6):3859-66. PubMed ID: 24557891.
    Abstract:
    Defensins are endogenous peptides with cysteine-rich antimicrobial ability that contribute to host defence against bacterial, fungal and viral infections. There are three subfamilies of defensins in primates: α, β and θ-defensins. α-defensins are most present in neutrophils and Paneth cells; β-defensins are involved in protecting the skin and the mucous membranes of the respiratory, genitourinary and gastrointestinal tracts; and θ-defensins are physically distinguished as the only known fully-cyclic peptides of animal origin, which are first isolated from rhesus macaques. All three kinds of defensins have six conserved cysteines, three intramolecular disulfide bonds, a net positive charge, and β-sheet regions. α and θ-defensins are closely related, comparative amino acid sequences showed that the difference between them is that θ-defensins have an additional stop codon limits the initial defensin domain peptides to 12 residues. Humans, chimpanzees and gorillas do not produce θ-defensin peptides due to a premature stop codon present in the signal sequence of all θ-defensin pseudogenes. By using comprehensive computational searches, here we report the discovery of complete repertoires of the α and θ-defensin gene family in ten primate species. Consistent with previous studies, our phylogenetic analyses showed all primate θ-defensins evident formed one distinct clusters evolved from α-defensins. β-defensins are ancestors of both α and θ-defensins. Human has two copies of DEFA1 and DEFT1P, and two extra DEFA3 and DEFA10P genes compared with gorilla. As different primates inhabit in quite different ecological niches, the production of species-specific α and θ-defensins and these highly evolved θ-defensins in old world monkeys would presumably allow them to better respond to the specific microbial challenges that they face.
    [Abstract] [Full Text] [Related] [New Search]