These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of extracellular calcium on calcium movements of excitation-contraction coupling in frog skeletal muscle fibres.
    Author: Brum G, Ríos E, Stéfani E.
    Journal: J Physiol; 1988 Apr; 398():441-73. PubMed ID: 2455801.
    Abstract:
    1. The effect of low extracellular free calcium ion concentration ([Ca2+]o) on the transient changes in cytoplasmic [Ca2+] associated with membrane depolarization (Ca2+ transients) was studied on single cut skeletal muscle fibres of the frog, voltage clamped in a double-Vaseline-gap chamber. The Ca2+ transients were monitored with the dye Antipyrylazo III diffused intracellularly. 2. The Ca2+ transients were substantially reduced in external salines with low [Ca2+] (10(-5) M or less and Mg2+ substituted for Ca2+). This decrease was more noticeable at late times during 100 ms or longer depolarizing pulses. 3. The rates of the processes that remove Ca2+ from the myoplasmic solution were not altered by the low [Ca2+]o. This implies that the input flux of Ca2+ into the myoplasm was reduced. 4. The Ca2+ input flux, equal to release flux from the sarcoplasmic reticulum (SR) plus Ca2+ influx via the T-tubule membrane Ca2+ channel, was derived from the Ca2+ transient. In low [Ca2+]o the peak input flux was reduced by 45% (n = 16 fibres) and decayed more rapidly during a depolarizing pulse. 5. The reduction in Ca2+ influx via the T-tubule membrane Ca2+ channel due to the reduced [Ca2+]o could not account for more than 5% of the reduction in Ca2- input flux, which was thus interpreted as an actual reduction of release from the SR. 6. The inward (T-tubular) Ca2+ current was not associated with this effect of extracellular Ca2+ as the effect was voltage independent at high intracellular voltages at which the Ca2+ inward current was strongly voltage dependent. 7. Low [Ca2+]o made Ca2+ release more readily inactivatable; the effect of low [Ca2-]o is best described as a left shift by 29 mV of the 'inactivation curve' of Ca2+ release, relating peak release flux to membrane holding potential. 8. The reduction of Ca2+ release by low [Ca2+]o was not accompanied by changes in the voltage dependence of Ca2+ release or in the threshold voltage for just-detectable release. 9. The results are consistent with a primary effect of Ca2+ on the T-tubular-membrane voltage sensor of excitation-contraction coupling.
    [Abstract] [Full Text] [Related] [New Search]