These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of metalloporphyrins with high sensitivity using graphene-enhanced resonance Raman scattering.
    Author: Kim BH, Kim D, Song S, Park D, Kang IS, Jeong DH, Jeon S.
    Journal: Langmuir; 2014 Mar 18; 30(10):2960-7. PubMed ID: 24559429.
    Abstract:
    Graphene-enhanced resonance Raman scattering (GERRS) was performed for the detection of three different metallo-octaethylporphyrins (M-OEPs; M = 2H, FeCl, and Pt) homogeneously thermal vapor deposited on a graphene surface. GERRS of M-OEPs were measured using three different excitation wavelengths, λ(ex) = 405, 532, and 633 nm, and characterized detail vibrational bands for the identification of M-OEPs. The GERRS spectra of Pt-OEP at λ(ex) = 532 nm showed ~29 and ~162 times signal enhancement ratio on graphene and on graphene with Ag nanoclusters, respectively, compared to the spectra from bare SiO2 substrate. This enhancement ratio, however, was varied with M-OEPs and excitation wavelengths. The characteristic peaks and band shapes of GERRS for each M-OEP were measured with high sensitivity (100 pmol of thermal vapor deposited Pt-OEP), and these facilitate the selectively recognition of molecules. Also, the peaks shift and broadening provide the evidence of the interaction between graphene and M-OEPs through the charge transfer and π-orbital interaction. The increase of graphene layer induced the decrease of signal intensity and GERRS effect was almost not observed on the thick graphite flakes. Further experiments with various substrates demonstrated that the interaction of single layer of graphene with molecule is the origin of the Raman signal enhancement of M-OEPs. In this experiment, we proved the graphene is a good alternative substrate of Raman spectroscopy for the selective detection of various metalloporphyrins with high sensitivity.
    [Abstract] [Full Text] [Related] [New Search]