These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Maternal separation impairs long term-potentiation in CA1-CA3 synapses and hippocampal-dependent memory in old rats.
    Author: Sousa VC, Vital J, Costenla AR, Batalha VL, Sebastião AM, Ribeiro JA, Lopes LV.
    Journal: Neurobiol Aging; 2014 Jul; 35(7):1680-5. PubMed ID: 24559649.
    Abstract:
    Exposure to chronic stress during the neonatal period is known to induce permanent long-term changes in the central nervous system and hipothalamic-pituitary-adrenal axis reactivity that are associated with increased levels of depression, anxiety, and cognitive impairments. In rodents, a validated model of early life stress is the maternal separation (MS) paradigm, which has been shown to have long-term consequences for the pups that span to adulthood. We hypothesized that the early life stress-associated effects could be exacerbated with aging, because it is often accompanied by cognitive decline. Using a MS model in which rat pups were separated from their mothers for 3 hours daily, during postnatal days 2-14, we evaluated the long-term functional consequences to aged animals (70-week-old), by measuring synaptic plasticity and cognitive performance. The baseline behavioral deficits of aged control rats were further exacerbated in MS animals, indicating that early-life stress induces sustained changes in anxiety-like behavior and hippocampal-dependent memory that are maintained much later in life. We then investigated whether these differences are linked to impaired function of hippocampal neurons by recording hippocampal long-term potentiation from Schaffer collaterals/CA1 synapses. The magnitude of the hippocampal long-term potentiation induced by high-frequency stimulation was significantly lower in aged MS animals than in age-matched controls. These results substantiate the hypothesis that the neuronal and endocrine alterations induced by early-life stress are long lasting, and are able to exacerbate the mild age-associated deficits.
    [Abstract] [Full Text] [Related] [New Search]