These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Histamine release from human basophils by synthetic block co-polymers composed of polyoxyethylene and polyoxypropylene and synergy with immunologic and non-immunologic stimuli.
    Author: Atkinson TP, Smith TF, Hunter RL.
    Journal: J Immunol; 1988 Aug 15; 141(4):1307-10. PubMed ID: 2456350.
    Abstract:
    Co-polymers composed of polyoxyethylene and polyoxypropylene have been shown previously to trigger histamine release from mouse peritoneal mast cells; this property quantitatively is directly related to the ionophorous ability of these compounds to cause a functional exchange of intracellular K+ for extracellular Na+ across the cell membrane. We investigated the effect of an inflammatory copolymer, T130R2, on human basophils. The data demonstrate that T130R2 can cause calcium-dependent histamine release from human basophils in vitro. Further, at concentrations that do not cause histamine release, this co-polymer markedly augments release by suboptimal concentrations of the lectin Con A or anti-IgE antibody and the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate but not the calcium ionophore A23187. Thus, these co-polymers induce mediator release from cells of both rodents and humans. In both instances it is likely that calcium-dependent cell triggering is the result of an influx of sodium ions with concomitant depolarization of the transmembrane potential. In common with the calcium ionophore A23187, the co-polymer T130R2 has the ability to synergize with stimuli which trigger the IgE receptor as well as those which directly activate the cellular calcium- and phospholipid-dependent protein kinase.
    [Abstract] [Full Text] [Related] [New Search]