These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: SNAI1 is critical for the aggressiveness of prostate cancer cells with low E-cadherin. Author: Deep G, Jain AK, Ramteke A, Ting H, Vijendra KC, Gangar SC, Agarwal C, Agarwal R. Journal: Mol Cancer; 2014 Feb 24; 13():37. PubMed ID: 24565133. Abstract: BACKGROUND: A better molecular understanding of prostate carcinogenesis is warranted to devise novel targeted preventive and therapeutic strategies against prostate cancer (PCA), a major cause of mortality among men. Here, we examined the role of two epithelial-to-mesenchymal transition (EMT) regulators, the adherens junction protein E-cadherin and its transcriptional repressor SNAI1, in regulating the aggressiveness of PCA cells. METHODS: The growth rate of human prostate carcinoma PC3 cells with stable knock-down of E-cadherin (ShEC-PC3) and respective control cells (Sh-PC3) was compared in MTT and clonogenic assays in cell culture and in nude mouse xenograft model in vivo. Stemness of ShEC-PC3 and Sh-PC3 cells was analyzed in prostasphere assay. Western blotting and immunohistochemistry (IHC) were used to study protein expression changes following E-cadherin and SNAI1 knock-down. Small interfering RNA (siRNA) technique was employed to knock- down SNAI1 protein expression in ShEC-PC3 cells. RESULTS: ShEC-PC3 cells exerted higher proliferation rate both in cell culture and in athymic nude mice compared to Sh-PC3 cells. ShEC-PC3 cells also formed larger and a significantly higher number of prostaspheres suggesting an increase in the stem cell-like population with E-cadherin knock-down. Also, ShEC-PC3 prostaspheres disintegration, in the presence of serum and attachment, generated a bigger mass of proliferating cells as compared to Sh-PC3 prostaspheres. Immunoblotting/IHC analyses showed that E-cadherin knock-down increases the expression of regulators/biomarkers for stemness (CD44, cleaved Notch1 and Egr-1) and EMT (Vimentin, pSrc-tyr416, Integrin β3, β-catenin, and NF-κB) in cell culture and xenograft tissues. The expression of several bone metastasis related molecules namely CXCR4, uPA, RANKL and RunX2 was also increased in ShEC-PC3 cells. Importantly, we observed a remarkable increase in SNAI1 expression in cytoplasmic and nuclear fractions, prostaspheres and xenograft tissues of ShEC-PC3 cells. Furthermore, SNAI1 knock-down by specific siRNA strongly inhibited the prostasphere formation, clonogenicity and invasiveness, and decreased the level of pSrc-tyr416, total Src and CD44 in ShEC-PC3 cells. Characterization of RWPE-1, WPE1-NA22, WPE1-NB14 and DU-145 cells further confirmed that low E-cadherin is associated with higher SNAI1 expression and prostasphere formation. CONCLUSIONS: Together, these results suggest that E-cadherin loss promotes SNAI1 expression that controls the aggressiveness of PCA cells.[Abstract] [Full Text] [Related] [New Search]