These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effect of SIRT6 on the odontoblastic potential of human dental pulp cells.
    Author: Sun HL, Wu YR, Huang C, Wang JW, Fu DJ, Liu YC.
    Journal: J Endod; 2014 Mar; 40(3):393-8. PubMed ID: 24565659.
    Abstract:
    INTRODUCTION: The aim of this study was to investigate whether SIRT6 is expressed in human dental pulp as well as the effect of SIRT6 on proliferation and odontoblastic differentiation of human dental pulp cells (HDPCs). METHODS: Immunohistochemical and immunocytochemical assays were used to detect the expression of SIRT6 in human dental pulp tissue and HDPCs. To determine the effect of SIRT6 on odontoblast differentiation, HDPCs with loss (HDPCs SIRT6 knockdown) and gain (HDPCs SIRT6 overexpression) of SIRT6 function were developed, and their proliferation ability was examined. Odontogenic differentiation of HDPCs was determined by alkaline phosphatase (ALP) activity, ALP-positive cell staining, alizarin red staining, and von Kossa staining. Mineralization-related genes, including ALP, dentin sialophosphoprotein (DSPP), and dentin matrix acidic phosphoprotein 1, were determined by real-time quantitative polymerase chain reaction. Western blot analysis was performed to detect the expression of DSPP protein. RESULTS: SIRT6 was found in the dental pulp tissue and HDPCs. SIRT6 knockdown decreased ALP activity in HDPCs; calcium nodule formation ability; and the expression of mineralization-related genes such as ALP, DSPP, and DMP1, whereas these were increased with the overexpression of SIRT6. CONCLUSIONS: SIRT6 is expressed in human dental pulp and participates in the odontoblast differentiation of HDPCs.
    [Abstract] [Full Text] [Related] [New Search]