These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanical versus manual chest compressions for cardiac arrest. Author: Brooks SC, Hassan N, Bigham BL, Morrison LJ. Journal: Cochrane Database Syst Rev; 2014 Feb 27; (2):CD007260. PubMed ID: 24574099. Abstract: BACKGROUND: This is the first update of the Cochrane review on mechanical chest compression devices published in 2011 (Brooks 2011). Mechanical chest compression devices have been proposed to improve the effectiveness of cardiopulmonary resuscitation (CPR). OBJECTIVES: To assess the effectiveness of mechanical chest compressions versus standard manual chest compressions with respect to neurologically intact survival in patients who suffer cardiac arrest. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Studies (CENTRAL; 2013, Issue 12), MEDLINE Ovid (1946 to 2013 January Week 1), EMBASE (1980 to 2013 January Week 2), Science Citation abstracts (1960 to 18 November 2009), Science Citation Index-Expanded (SCI-EXPANDED) (1970 to 11 January 2013) on Thomson Reuters Web of Science, biotechnology and bioengineering abstracts (1982 to 18 November 2009), conference proceedings Citation Index-Science (CPCI-S) (1990 to 11 January 2013) and clinicaltrials.gov (2 August 2013). We applied no language restrictions. Experts in the field of mechanical chest compression devices and manufacturers were contacted. SELECTION CRITERIA: We included randomised controlled trials (RCTs), cluster RCTs and quasi-randomised studies comparing mechanical chest compressions versus manual chest compressions during CPR for patients with atraumatic cardiac arrest. DATA COLLECTION AND ANALYSIS: Two review authors abstracted data independently; disagreement between review authors was resolved by consensus and by a third review author if consensus could not be reached. The methodologies of selected studies were evaluated by a single author for risk of bias. The primary outcome was survival to hospital discharge with good neurological outcome. We planned to use RevMan 5 (Version 5.2. The Nordic Cochrane Centre) and the DerSimonian & Laird method (random-effects model) to provide a pooled estimate for risk ratio (RR) with 95% confidence intervals (95% CIs), if data allowed. MAIN RESULTS: Two new studies were included in this update. Six trials in total, including data from 1166 participants, were included in the review. The overall quality of included studies was poor, and significant clinical heterogeneity was observed. Only one study (N = 767) reported survival to hospital discharge with good neurological function (defined as a Cerebral Performance Category score of one or two), demonstrating reduced survival with mechanical chest compressions when compared with manual chest compressions (RR 0.41, 95% CI 0.21 to 0.79). Data from four studies demonstrated increased return of spontaneous circulation, and data from two studies demonstrated increased survival to hospital admission with mechanical chest compressions as compared with manual chest compressions, but none of the individual estimates reached statistical significance. Marked clinical heterogeneity between studies precluded any pooled estimates of effect. AUTHORS' CONCLUSIONS: Evidence from RCTs in humans is insufficient to conclude that mechanical chest compressions during cardiopulmonary resuscitation for cardiac arrest are associated with benefit or harm. Widespread use of mechanical devices for chest compressions during cardiac events is not supported by this review. More RCTs that measure and account for the CPR process in both arms are needed to clarify the potential benefit to be derived from this intervention.[Abstract] [Full Text] [Related] [New Search]