These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: EEG signals classification of epileptic patients via feature selection and voting criteria in intelligent method. Author: Ghaffari A, Ebrahimi Orimi H. Journal: J Med Eng Technol; 2014 Apr; 38(3):146-55. PubMed ID: 24579561. Abstract: Epileptic disease can be diagnosed by using intelligent methods on the Electroencephalograph (EEG) signals. In this paper, wavelet packet transform (WPT) was used in each of the frequency bands and wavelet coefficients were obtained, then the energy and entropy function was done on the wavelet coefficients and used as initial feature vectors. In the next step, eight and 15 features from 30 initial energy and entropy features were selected as the final features because their receiver operating characteristic (ROC) curve areas were higher than others. There were seven classifier inputs. These seven classifiers consisted of four artificial neural networks (ANN) with different structures, support vector machines (SVM), K-nearest neighbours (KNN) and a hybrid network. Each classifier was trained by 0.5, 0.8 and 0.9 EEG signals. After the training process, a fusion network based on a voting criteria was used to make the algorithm robust against the possible changes in each classifier and increase the classification accuracy. Finally, the algorithm was tested by other EEG signals. As a result, normal and epileptic classes were detected with total classification accuracy of 99-100%.[Abstract] [Full Text] [Related] [New Search]