These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Binding of ethidium ion to left-handed Z-RNA induces a cooperative transition to right-handed RNA at the intercalation site.
    Author: Hardin CC, Walker GT, Tinoco I.
    Journal: Biochemistry; 1988 May 31; 27(11):4178-84. PubMed ID: 2458132.
    Abstract:
    The equilibrium binding of the ethidium cation (Etd+) to the right-handed A-form of poly-[r(C-G)], the B-form of poly[d(C-G)], and the left-handed Z-forms of Br-poly[r(C-G)] and Br-poly[d(C-G)] was investigated in 0.22 M NaCl by optical methods. Scatchard analysis indicates that Etd+ intercalates into right-handed forms of poly[r(C-G)] and poly[d(C-G)] in a noncooperative manner. Correlation of Etd+ absorbance binding isotherms and polynucleotide circular dichroism data indicates that drug binding to Br-poly[r(C-G) and Br-poly[d(C-G)] results in cooperative conversion from left-handed Z-forms to right-handed intercalated conformations. Approximate stoichiometries necessary to induce the left- to right-handed transitions are 1 Etd+/9 base pairs (bp) for Z-RNA and 1 Etd+/6 bp for Z-DNA. The apparent limiting binding stoichiometries are approximately 1 Etd+/3 bp for RNA and 1 Etd+/2 bp for DNA. The equilibrium binding constants for binding to the right-handed forms decrease in the order Br-poly[d(C-G)], Br-poly[r(C-G)], poly[d(C-G)], and poly[r(C-G)]. Thermodynamic parameters are obtained by van't Hoff analysis of Etd+ absorbance thermal dissociation data. Enthalpy values for all four polynucleotides are negative and of similar magnitude. Negative entropy values indicate that the binding processes are primarily enthalpically driven.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]