These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Possible coexistence of amino acid (gamma-aminobutyric acid), amine (dopamine) and peptide (substance P); neurons containing immunoreactivities for glutamic acid decarboxylase, tyrosine hydroxylase and substance P in the hamster main olfactory bulb. Author: Kosaka K, Hama K, Nagatsu I, Wu JY, Kosaka T. Journal: Exp Brain Res; 1988; 71(3):633-42. PubMed ID: 2458279. Abstract: The coexistence of immunoreactivities for glutamic acid decarboxylase (GAD), tyrosine hydroxylase (TH) and substance P (SP) was revealed in the hamster main olfactory bulb, using the peroxidase-antiperoxidase immunohistochemical method. Adjacent 40 micron thick Vibratome sections were incubated in different antisera and those cells which were bisected by the plane of sectioning were identified at the paired surfaces of two consecutive sections. The coexistence of the immunoreactivities for 1) TH and GAD, 2) TH and SP and 3) GAD and SP in the same cells could thus be determined by observing the immunoreactivity of the two halves of the cell incubated in two different antisera. About 70% of TH-like immunoreactive (TH-LI) neurons in the periglomerular region also contained GAD-like immunoreactivity, whereas about 45% of GAD-LI ones were also TH-like immunoreactive. Furthermore, almost all (more than 95%) of SP-LI neurons contained both GAD-like and TH-like immunoreactivities. These observations indicate that in the periglomerular region of the hamster main olfactory bulb, some neurons (about 9% of all neurons containing TH-like and/or GAD-like immunoreactivities) may contain three different categories of neuroactive substances, that is, amino acid (GABA), amine (dopamine) and peptide (SP).[Abstract] [Full Text] [Related] [New Search]