These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fast and robust measurement of microstructural dimensions using temporal diffusion spectroscopy.
    Author: Li H, Gore JC, Xu J.
    Journal: J Magn Reson; 2014 May; 242():4-9. PubMed ID: 24583517.
    Abstract:
    Mapping axon sizes non-invasively is of interest for neuroscientists and may have significant clinical potential because nerve conduction velocity is directly dependent on axon size. Current approaches to measuring axon sizes using diffusion-weighted MRI, e.g. q-space imaging with pulsed gradient spin echo (PGSE) sequences usually require long scan times and high q-values to detect small axons (diameter <2μm). The oscillating gradient spin echo (OGSE) method has been shown to be able to achieve very short diffusion times and hence may be able to detect smaller axons with high sensitivity. In the current study, OGSE experiments were performed to measure the inner diameters of hollow microcapillaries with a range of sizes (∼1.5-19.3μm) that mimic axons in the human central nervous system. The results suggest that OGSE measurements, even with only moderately high frequencies, are highly sensitive to compartment sizes, and a minimum of two ADC values with different frequencies may be sufficient to extract the microcapillary size accurately. This suggests that the OGSE method may serve as a fast and robust measurement method for mapping axon sizes non-invasively.
    [Abstract] [Full Text] [Related] [New Search]