These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Induction of extracellular defense-related proteins in suspension cultured-cells of Daucus carota elicited with cyclodextrins and methyl jasmonate. Author: Sabater-Jara AB, Almagro L, Pedreño MA. Journal: Plant Physiol Biochem; 2014 Apr; 77():133-9. PubMed ID: 24589476. Abstract: Suspension cultured-cells (SCC) of Daucus carota were used to evaluate the effect of methyl jasmonate and cyclodextrins, separately or in combination, on the induction of defense responses, particularly the accumulation of pathogenesis-related proteins. A comparative study of the extracellular proteome (secretome) between control and elicited carrot SCC pointed to the presence of amino acid sequences homologous to glycoproteins which have inhibitory activity against the cell-wall-degrading enzymes secreted by pathogens and/or are induced when carrot cells are exposed to a pathogen elicitor. Other amino acid sequences were homologous to Leucine-Rich Repeat domain-containing proteins, which play an essential role in defense against pathogens, as well as in the recognition of microorganisms, making them important players in the innate immunity of this plant. Also, some tryptic peptides were shown to be homologous to a thaumatin-like protein, showing high specificity to abiotic stress and to different reticuline oxidase-like proteins that displayed high levels of antifungal activity, suggesting that methyl jasmonate and cyclodextrins could play a role in mediating defense-related gene product expression in SCC of D. carota. Apart from these elicitor-inducible proteins, we observed the presence of PR-proteins in both control and elicited carrot SCC, suggesting that their expression is mainly constitutive. These PR-proteins are putative class IV chitinases, which also have inhibitory activity against pathogen growth and the class III peroxidases that participate in response to environmental stress (e.g. pathogen attack and oxidative), meaning that they are involved in defense responses triggered by both biotic and abiotic factors.[Abstract] [Full Text] [Related] [New Search]